

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andhori (W) Mumbai 400058

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025

Program: ELECTRICAL

S.y. s. Tus semiy

Duration: 03 Hours

Course Code: BS-BTE401

Maximum Points: 100

Course Name: Transforms Statistics & Probability

Semester: IV

Attempt any five out of seven questions

Use of scientific calculator is allowed.

13/5/25

Q N O					QUE	STIO	N				POI NT S	0	B	Mo ulo no
Q	The exper	imen	t is 1	epeat	ed 128	times	and fo	llowin	g distr	bution is obtained.	06	4	2	4
la)	No.of heads	0	1	2	3	4	5	6	7	Total				
	Freque ncy	7	6	19	35	30	23	7	1	128				
	Fit a Bino	mial	dist	ributi	on if th	ne natu	re of c	oins is	unkno	wn.			1	
Q 1	Two cards variance fo					sly fror	n a wel	l – shu	ffled de	ck of 52 cards. Compute t	he 06	4	2	4
b)	variation to		,,,,,,,,,	JC. 01	4003									<u> </u>
Q	Find the F	ourie	r Tr	ansfor	m of f	`(x). if	f(x):	$= \begin{cases} e^{i\omega x} \end{cases}$, a <	< x < b	08	2		2
1c						(-1/)	- ()	[0,	х «	$\langle a, x \rangle b$				
Q 2	If z = ax +	-						een x	and y s	how that	06	2	2	3
a)			-	+ b²σ	$y^2 + 2a$	brσ _x σ _y	,							
	Further sho			2 _2										
	r =	O _x	$\frac{r\sigma_y}{2\sigma_z}$	$\frac{2}{2} - \sigma_{x}^{2}$	-у									
	Where σ_{x} ,	σ _y a	nd ($\sigma_{\mathrm{x-y}}$ are	e the st	tandaro	devia	tion o	fx,ya	nd x – y respectively				
Q										mic conditions. Use chi-so	•	3	2	7
2 b)	of i.Q.	out w	netr	ner the	ere is ar	ny asso	ciation	betwe	en ecor	nomic conditions and the	evel			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

		Economic		I.Q.				1	
		Conditions	High	Medium	Low				
		Rich	160	300	140				
		Poor	140	100	160				
Q 2c	Find th	ne Fourier Tran	asform of f(x)	$) = \begin{cases} 1 - \mathbf{x} , & \text{if } \mathbf{x} < 1 \\ 0, & \text{if } \mathbf{x} > 1 \end{cases} $		08	2	3	2
Q 3a	Show	that the correla	tion coefficien	at r lies between -1 and 1.		06	4	2	3
Q 3 b)	are nor	mally distribut	ed with means	y students in mathematics, s 51,53 and 46 with standar securing total marks (i) 18	d deviations 15,12,	16	4	4 5	5
Q 3c)	Obtain	the Fourier Serie	es for $f(x) = x$	2 in $(0,2\pi)$		08	1		1
Q 4 a)		whether the fin? $f(x) = \frac{1}{2}e^{-\frac{1}{2}}$		ctions can be looked upo	n as probability d	ensity 06	4	3	5
Q 4 b)		complex form e^{ax} $x \in ($		ies		06	1	2	•
Q 4c)	appointe research respecti	ed as a vice char is promoted by vely. Determine	ncellor of a univ these people i the probability	politician, a businessman a ersity are 0.50,0.30 & 0.20 re f they are appointed as vice of that research is promoted in what is the probability that the	spectively. Probabili chancellor are 0.3,0.3 n the university. Also	ty that 7 7 0.8 find if	4		4

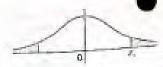
SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai 400058

Q 5 a)	placed in lst, lind or illrd division according as he secures 60% or more marks, between 45% &			4	2 5
Q 5 b)	Find the Fourier Series for function $f(x)$ defined by $f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}$	06			1
Q 5e)	In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible: Variance of $X = 9$ Regression equations: $8x = 10y + 66 = 0$ $40x = 18y = 214$	08	2		7
	i.Mean, value of x and y ii.Standard deviation of y. iii.Coefficient of correlation between x and y				
Q 6 a)	The heights of six randomly chosen sailors are in inches; 63,65,68,69,71 & 72. The heights of ten randomly chosen soldiers are; 61.62,65,66,69,69,70,71,72&73. Discuss in the light of this data that the soldiers on an average are taller than sailors	06	3	3	6
Q	In a precision bombing attack there is a 50% chance that any one bomb will strike the target. Two direct hits are required to destroy the target completely. How many bombs must be dropped to give atleast 99% chance of destroying the target?	06	4	3	5
6c)	Obtain the half range sine series $f(x) = x(\pi - x) \qquad 0 < x < \pi$ Hence show that $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$ Prices of shares of a someone with	08	1		1
7a	Prices of shares of a company on different days in a month were found to be 66, 65, 69, 70, 69, 71, 70, 63, 64 and 68. Discuss whether the price of shares to be 65.	06	3	3	6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumhai – 400058


Q	Compute	spe	armar	ı's ran	k coo	relatio	n coe	fficien	t for the following data	06	2	2	7
7		X	10	12	18	18	15	40					
b)		37	10	10	25	25	50	25	=				
		Y	12	18	25	25	50	25					
Q	Obtain the	e Fo	urier	Series	for	<u> </u>	₽			08	1		1
7c	10)	Ti-	2 ≤ x	≤ -1								
)	f(-)	+ x		$1 \le x$						ĺ			
	$f(x) = \begin{cases} 1 \\ 1 \end{cases}$	- x	0) ≤ x ≤	1								
)	1	l ≤ x ≤	2								

Maria Union Standard Hormal Curve

in the latete with a first and a second recommendation of the second sec

	in)	70 10	62	6),	(p.	Ub 1		.57	-4a 4	- F
	Auto 1	1040	0080	0120	0190	AT IN	4/235	0272	927 T	09391
	1120-7	174734	0476	43.71	4077	前海土	9030	COVE T	NO. 15 1 18 18	175
	11193	2832	M171	的	10040	Cath)	1026	1 gas		3141
	1/20	3211	1355	1232	1331	4276	1994	1444	1,81	1517
	100	中国	1674	1564	14/69	-1778	1772	门和中个	18437	107
	1615	15,15	AMES	2019	2054	2085	2124	2.4.	3120	2224
EN L	12.67	12241	25/24	3000	2349	2472	设领	2466	2517	2549
72	2560	2614	2042	2673	27.7%	27:21	\$784.	2794	2823	2652
OLD V	2491	3910	2039	2.957	,2046	2020	3955	5078	31.56	.0133
4	31-10	54 365	3212	.5252	3264	3288+	明直	3840	3365	3385
15	3419	3436	3161	1486	,3508	3537	2559	一件77	3699	3321
	9543	2886	3666	3705	3720	3749	3770	3789	3910	3330
	50.40	3660	5888	.6907	3/925	\$5.44	3562	15980	3897	4015
	1032	4045	4006	4002	4000	1411	4131	19197	州於	4177
1.4	14150	4207	4222	4236		11266	14376	624	4306	431.9
	4392	4245	4369	4310	4892	4364	4400	加州	4:25	444
1五	4153	OF THE PARTY OF	9474	4484	3,4495	4505	4435	4525	,4525	4EAE
18.Y	1854	100	1 4573	4582	M591	4559	ALL DESIGNATION OF THE PARTY OF	《大学》 (1000)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+833 4706
· 有 a	4663		1.4856	4.5.54	4671	1836	THE PARTY	- 10 - 10 - 10		1700 1707
4.0	4/15	B THE SHARE	4726	47.32	4746	-47-69	4750	#75.B	。并以为为	电影摄影
	11.00	The state of	4783	4789	1 4753	6798	. sec	BOT SHOWING THE	ALC: N	Burnett Residence
320	AZVS	一	4839	.48\$4		4342	- - d4/	THE RESERVE OF THE PARTY OF THE	No. of the last of	
	462			4871	.4875	45/1	134		A STERN	4 7 17 5
7.0	086		42 38 35	4507	4004	,4900	DECEMBER OF THE PERSON NAMED IN COLUMN 1	MARKET TO SERVICE THE		THE RESERVE
35				1000000	A Long Colors	THE RESERVE OF THE PARTY OF	3 493		1 Jan 1990	月月夏夏
	4000	Mary		4 10 10 10	F 12 5 3 7	484	6 (3UA	The second secon	1000 1 7 100	100000
1.45	418	THE RESERVE		Y 10 17 10	THE PERSON NAMED IN	1000	a .190		Physical Company	
人经	A295	THE RESERVE OF THE PERSON NAMED IN		位于200 年		新取图	The state of the state of	4 497		and the second
1.3.7			The State of the S	对于	Marin Same	The same		rg 1997	and the second	
2.8	187	ALC: NO THE RESERVE	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		建筑市场发展	學性別市院	100		5 494	
1	498	1984				计算程序		1. 40	9 499	a Traces
1 30	- Mile	2 A56	3490	人。如此	P. L.					110

Percentage Points of t - distribution

Example For $\Phi = 10.0, 0.1,$ P(||1| > 1.812) = 0.1

	200	7	0.05	0.02	200
P	0,20	0,10		X 10 10 10 10 10 10 10 10 10 10 10 10 10	rù.0
0	3.078	6,314	12.706	31.812	63.657
	1.886	2.920	دران	3.965	9.925
1 2	1,635	2.353	3,182	4.541	5.841
3	1,533	2,132	2.776	3.747	4.604
5	1,476	2.015	2.571	3.365	4.032
5	1,440	1.943	2.447	3.143	3.707
7	1,415	1,895	2,365	2,998	2,498
8	1.397	1,860	2,306	2.896	8.255
9	1.383	1,833	2.262	2.821	3.250
10	1.372	1,812	2.228	2.764	3.169
11	1.363	1.796	2.201	2,71B	3.103
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1,345	1,761	2.145	2,624	2.977
15	1.341	1.753	2,131	2.602	2.947
16	1.337	1.746	2,120	2.583	2.921
17	1.333	1.740	2.110	2,567	2.898
18	1,330	1.734	2,101	2.552	2.878
19	1.328	1.729	2.093	2,539	2.861
20	1.325	1.725	2.086	1.528	2.845
21	1.323	1.721	2.080	2,518	2.831
22	1.321	1.717	2.074	2.508	2.619
23	1,319	1.714	2.069	2.500	2.807
24	1.315	1.711	2.064	2,492	2.797
25	1.316	1.708	2,050	2,485	2.287
26	1.315	1.706	2.056	2.479	2.779
27	L314	1.703	2.052	2,473	2.771
28	1.313	1.701	2:048	2.467	2.763
29	1.311	1.699	2.045	2,462	2.755
30	1.310	1.697	2.042	2.457	2.750
40	.1.303	1.684	2.021	2.423	2.704
60	1.288	1.571	2:003	2.590	2,660
120	1.289	1.658	1.980	2.358	2,617
	1.262	1.645	1.960	2.325	2,576
Andrew States	And the second	F. Charles Sand	And Salvery In.	March Street	10 TO 10 10

Percentage Points ut & -.

Example For $\Phi = 10 \text{ d. o.} | P(\chi^2 > 15.99) = 0.10$

PI	0 = .99	0.95	0,50	0.10	0. 05	0.02	0.01
-	.000157	:00393	.455	2.706	3:841	5.214	6.635
1	0201	103	1.386	4.605	5.991	7.824	9.210
î	.115	352	2.366	6.251	7.815	9.837	11.341
2]	297	1.711	3.357	7.779	9.488	11.668	13.277
4	.554	1,145	4.351	9.236	11.070	13.388	15,086
5	.872	1.635	5.348	10.645	12.592	15.033	15,812
6	1,339	2.167	6.346	12.017	14.067	16,622	18.475
~	1.646	2.733	7.344	13.362	15.507	18.168	20,090
8	2.088	3.325	8.343	14.684	16.919	19.679	21.666
9 0	2.558	3.940	9.340	15.987	18.307	21.161	23.209
	3.053	4.575	10.341	17.275	19.575	22.618	24.725
1	3.533	5.226	11.340	18.549	21.026	24.054	26.217
2	4,107	5.892	12,340	19.812	22.362	25.472	27.688
3	4.660	6.571	13.339	21,064	23,685	26.873	29,141
4	4,229	7.261	14.339	22.307	24.996	28.259	30.578
5 6	5.812	7.962	15,338	23,542	26,296	29,633	32.000
7	6.408	8.672	16.338	24.769	27.587	30.995	33,409
8	7,015	9.390	17.338	25.989	28.869	32.346	34.805
9	7.633	10.117	18.338	27.204	30.144	33,687	36.191
Ď.	8.260	10.851	19.337	28.412	31.410	35.020	37.566
1	8.897	11:591	20.337	29.615	32.671	36.349	38,932
2		12.338	21,337	30,813	33,924	37.659	40,289
3	9.542	13.091	22.337	32.007	35,172	38,968	41.638
, i	10.196			32.196	36,415	40.270	42 980
5	10.856	13.848	23.337	34.382	37.852	41.566	44.314
0 0	11.524	14.611	24.337		38.885	41.856	45.64
- 1	12.198	15.379	25.336	35.363	40.113	44,140	46.96
7	12.879	16,151	26,336	36.741		45.419	48.27
3	13.565	16 928	27.336	37.916	41.337	The state of the s	49,58
9	14.256	17.708	28.336	39.087	42,557	46.693	50.89
0	14,953	18 493	29,336	40.256	43.773	47.962	- Susou

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025

J. y. s. Tres Etel Dun W

Program: ELECTRICAL

Course Code: BS-BTE401 Maximum Points: 100

Course Name: Transforms Statistics & Probability

· Attempt any five out of seven questions

Use of scientific calculator is allowed.

23/6/25

Semester: IV

Duration: 03 Hours

QN O.			QUES	TION				POI NT S	C	B	Mod no.
Qla)	1	omial distribu actual ones:		oliowing	data and com	pare the theoretical fi	requencies	06	4	2	4
		X 0		3 4	5						
Qlb	An urn			4 22 d balls.	8 Three balls a	re drawn with replac	cement,	06	4	2	4
)			μ, σ^2 and σ for							i :	
Q1c)	Find the	Fourier Tra	ansform of f	$\mathbf{(x)} = \begin{cases} 1 \\ 0 \end{cases}$	- x , if $ x $ < if $ x $ >	:1 ·1		08	2	3	2
Q2 a)			$+b^2\sigma_y^2 + 2ab$		etween x and	l y show that		06	2	2	3
		show that $r = \frac{\sigma_x^2 + \sigma_y^2}{2\sigma_x}$ σ_x , σ_y and σ_y	У	andard d	eviation of x	, y and x − y respect	ively			0	
Q2 b)	cold, hal	f of them we		ug and h	alf of them w	n experiment on 500 p ere given sugar pills. T able.	i	06	3	2	7
			Heiped		Harmed	No effect					
·		Drug	150		30	70					
		Sugar Pills	130		40	80					

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai — 400058

	On the basis of this data, can it be concluded that the drug and sugar pills differ significantly in curing cold?				
Q2c	Find the Fourier Transform of f(x), if f(x) = $\begin{cases} e^{i\omega x}, & a < x < b \\ 0, & x < a, x > b \end{cases}$	08	2		2
Q3a	Show that the correlation coefficient r lies between -1 and 1.	06	4	2	3
Q3 b)	In an examination marks obtained by students in mathematics, physics and chemistry are normally distributed with means 51,53 and 46 with standard deviations 15,12,16 respectively. Find the probability of securing total marks (i) 180 or more (ii) 90 or below	06	4	5	5
Q3c)	Find the Fourier series for $f(x) = \begin{cases} 0 & -\pi \le x \le 0 \\ x & 0 \le x \le \pi \end{cases}$	08	1	4	1
Q4 a)	The length of time a lady speaks on telephone is found to be a random variable with $ \text{PDF } f\left(x\right) = \begin{cases} Ae^{-x/5}, x \geq 0 \\ 0, x < 0 \end{cases} $ Find A and the probability that she will speak for (i) more than 10 minutes (ii) less than 5 minutes(iii) between 5 & 10 minutes.	06	4	3	5
Q4 b)	Obtain complex form of the Fourier series for $f(x) = e^{-x}$ $0 \le x \le 2\pi$	06	1	2	2
Q4c	Of the three men, the chances that a politician, a businessman and an academician will be appointed as a vice chancellor of a university are 0.50,0.30 & 0.20 respectively. Probability that research is promoted by these people if they are appointed as vice chancellor are 0.3,0.7 7 0.8 respectively. Determine the probability that research is promoted in the university. Also find if research is promoted in the university what is the probability that the VC is an academician.	08	4		4
Q5 a)	In an examination it is laid down that a student passes if he secures 30% or more marks. He is placed in Ist,IInd or IIIrd division according as he secures 60% or more marks, between 45% & 60% and between 30% & 45% respectively. He gets distinction in case he secures 80% or more marks. It is noticed from the result that 10% of the students falled in the examination where as 5% of them obtained distinction. Calculate the percentage of students placed in the second division.	06	4	2	5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Q5	Find the Fourie	er Series	for fund	tion	f(x)	defir	ed by	,				06	1	2	1
b)		ſπx	0 <	x <1											
	f(x)=	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ے۔ ایما ای	·· ~ ^											
Q5c	In a partially de				cord	of an	analy	sis of	con	elation d	ata, the	08	2	3	7
)	following resul	•	_	le:											
	1	e of X =	-												
	Regress	ion equa	ations:		8x -	-10y	+ 66 =	• 0							
					40x	-18	y = 21	4							
	What are														
	i.Mean,	value of	f x and y	,									Ì		
	ii.Stand	ard devi	ation of	y.											
	iii.Coefficient of	correlation	on betwe	en x a	nd y										
Q6a	Samples of two	types o	f bulbs v	vere t	este	d for	length	of li	fe an	d·followi	ng data were	06	3	4	6
)	obtained.		 				-,			·					
			Size				Mea	an			S.D.				
	Sample I		8	-			123	4 hou	rs		36 hours				
		·	<u> </u>												
	Sample II		7				103	6 hour	` \$		40 hours	ļ			
	Is the difference	in the me	eans suff	icient	to wa	rrant	that t	vpe l k	ulbs	are super	ior to type II]	
	bulbs?														
Q6b	In a precision bor	mbing at	tack ther	e is a !	50% d	hanc	e that	any or	ne bo	mb will st	rike the	06	4	3	5
)	target.Two direct	t hits are	required	to de	stroy	the t	arget o	comple	etely.	How man	y bombs				
Q6c	must be dropped Obtain the Four	to give a	atleast 95	% cna	ince d	of des	troyin	g the t	arge	t?					
. 1												08	1		1
)	$f(x) = \sin x $	-	$\pi \leq x \leq$	π											
Q7a	For a random sar	nple of 1	10 pigs fe	d diet	t A. t	he ind	reases	s in w	eight	in nound	s in a cortain	06	3	3	6
)	period were 10, 6	, 16, 17,	13, 12, 8	, 14, 1	5, 9.							VU	3	3	0
	For another rando	om samp	le of 12	pigs, fe	ed on	diet	B, the	increa	se in	the same	period were				
ļ	7, 13, 22, 15, 12, 1	14, 18, 8,	. 21, 23, 3	10, 17.	Test	whet	her the	e diets	A &	B differ si	gnificantly as			j	
Q7	regards their effective regards their effective regards their effective regards are regards as the reg	ct on inci	rease in v	veight	. daa		<u> </u>		·	6 11 1					
b)	Ten contestants in Ranks by 1st	6	10 2	g are j	uage 8	a by t	nree ju 5	adges 3		followin 7	g order.	06	2	2	7
-,	judge				3	*		3	4	1					
	ilnd judge	5 4	4 10	1	9	3	8	7	2	6	-				
							1								

Rharativa Vidva Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai 400058

IIIrd judge	4	8	2	10	7	5	9	1	3	6						
Using rank co	orelation	n coee	ficien	t find	whic	h pai	r of ju	dges h	as the	neare	st a	pproach	to			
common taste																
70 70 (1)	07.			 .										08	1	1
$7c \mid If f(x) = x$	0≤2					_	11	• • •	د الله الله الله	- .						
Find I	alf rang	ge cos	ine se	eries u	sing	Pars	evai's	ident	ity a	eauce						
π^4	1 1	. 1	1	E.												
96	$1^{4} + 3^{4}$	54	+													

Businativa Vid a Planyan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION MAY 2025 / Re-Exam June 2025

Program: TV B. Tech (Electrical) Seven W

Duration: 3 hr

Maximum Points: 100

Semester: W

Course Code: PC-BTE401

Course Name: Power Generation, Transmission & Distribution

Note: Question 1 is compulsory; attempt any 4 from remaining 6.

Mins

Q. No.	Question	Points	со	BL	Module No.
Q.1a	A three phase 60 Hz, 500-kV AC transmission line is 400 km long. The line inductance is 0.88853 mH/km per phase and its capacitance is 0.01268 micro-Farad/km per phase. The line delivers 2000 MVA at 0.8 lagging power factor at 500 kV. Assume lossless line and determine the sending end quantities and voltage regulation using long line model.	10	2	2,3	4
Q.Ib	a) Calculate the receiving end voltage when the line given in Q.1a is terminated in an open circuit and is energized with 500 kV at the sending end. b) Determine the reactance and the MVAr of a three phase shunt reactor to be installed at the receiving end to keep the no load receiving end voltage at the rated value.	6	2	2,3	4
Q.1c	Calculate SIL loading for the transmission line mentioned in Q.1a. Find sending end voltage, current in case load is equal to SIL loading. Draw the vector diagram showing voltage and current at receiving & sending end. Hence comment on voltage profile of line under SIL loading		2	3,4,5	4
Q.2	Draw a neat diagram of construction of a 3 core cable with various layers of protection around it. Explain the purpose of each layer and material used for the same.	10	2	1,2	3
Q.2b	What are the objectives of neutral grounding & equipment earthing? [4m] Explain the terms touch voltage & step voltage with neat diagram. [6m]	10	3	1,2	6
Q.3a	A power station has to meet the following demand: Group A: 200 kW between 8 A.M. and 6 P.M. Group B: 100 kW between 6 A.M. and 10 A.M. Group C: 50 kW between 6 A.M. and 10 A.M. Group D: 100 kW between 10 A.M. and 6 P.M. and then between 6 P.M. and 6 A.M. Plot the daily load curve & load duration curve for the power station	10	1	1,2	1

(Mir mirya y mya Ishawan s

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058 END SEMESTER EXAMINATION MAY 2025 / Re-Exam June 2025

).3b	Draw neatly showing each component of distribution system i.e. feeder, distributor, transformer & service Mains for 1) Radial feeder & 2) Ring main system. (only diagrams) "The Ring main system is more reliable than radial distribution system". Justify.	10	4	1,2,4,	7
).4a	A three-phase transmission line has a per phase series impedance of $z = 0.03 + j0.4$ ohm per km and a per phase shunt admittance of $y = j4 \times 10^{-6}$ siemens per km. The line is 125 km long. Obtain the ABCD transmission matrix using Pi model. Determine the sending end quantities , and transmission efficiency when the line is receiving 407 MW, 7.833 Mvar at	10	2	2,3	4
Q.4b	Two single-phase ideal voltage sources are connected to two ends a transmission line of impedance of $0.7 + j2.4$ ohm with voltages given as $V_1 = 585 \angle 16.26^{0}V$ and $V_2 = 500\angle 0^{0}V$. Find the complex power for each machine and determine whether they are delivering or receiving real and reactive power. Also, find the real and the reactive power loss in the line.	10	2	2,3,5	1,5
Q.5a	With the help of vector diagram explain the overvoltage phenomena in case a line to ground fault occurs in a 3 phase system with ungrounded neutral. [6m] Suggest the remedy in brief.[4m]	10	3	3,4,5	6
Q.5b	For a 3 phase delta-star transformer as shown below, draw the vector diagram and hence prove that there is a 30^{0} phase shift between line to line voltage angles of primary and secondary winding. Ao Co b	4	2	2,3	5
Q.5c	The three conductors A, B and C of a 3- phase line are arranged in a horizontal plane with D _{AB} = 2 m and D _{BC} = 2.5 m. Find line-to-neutral capacitance per km if diameter of each conductor is 1.24 cm. The conductors are transposed at regular intervals. Also find charging current per phase if the line is maintained at 66 kV, 50 Hz	6	2	2,3	3
Q. 6a	List out all electrical storage systems. Explain working principle, advantages & limitations of pumped hydro storage and battery storage systems.	10	1	2,3	2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

Q.6b	A two-winding transformer rated at 9-kVA, 120/90-V, 60-HZ has a core	10	2	2,3	5
*	loss of 200 W and a full-load copper loss of 500 W.				
	(a) The above transformer is to be connected as an auto transformer to				
	supply a load at 120 V from 210 V source. What kVA load can be supplied				
	without exceeding the current rating of the windings? (For this part assume				
	an ideal transformer.)				
	(b) Find the efficiency with the kVA loading of part (a) and 0.8 lagging				
	power factor.				
Q.7a	Write short note on i) Skin Effect ii) Ferranti Effect	10	2	2,4,5	3,4
	Will these effects be observed in DC system? Justify your answer.				
		10	1 ~	1.5	1.5
Q.7b	"Some power system loads are modelled as constant impedance model	10	2	4,5	1,5
	whereas some are modelled as constant power model". Justify the		ļ		
	statement with example.	-			
	·				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbal 400058

PARTICIPATION NOTICE / Re-Exam June 2025 Program: TYB. Tech (Electrical) S. Y. J. Tul Engluration: 3hr 10

Course Code: PC-BTE401 Course Name: Power Generation, Transmission & Distribution

Note: Question I is compulsory; attempt any 4 from remaining 6.

Maximum Points: 100

Semester: 1

	Question	Points	со	BL	Module No.
Q. No.		20	1 to	3,4,5	1,3,4,6
8	i) What are the units of A, B, C, D constants of a transmission line? (assume any length) Justify. Will they differ for short, medium or long line? Justify [5] ii) For the following effects in power system, which fields (e.g., thermal, magnetic etc.) are responsible and which line parameters (e.g., capacitance, voltage, power loss etc.) are getting affected? Whether efficiency or voltage regulation of transmission line is getting affected by these effects? Write very briefly. [5]		3		
•	a) Skin effect b) Proximity effect c) Ferranti effect d) Corona effect iii) Why is earthing to an equipment & grounding to neutral of supply provided? Normally how much current does flow through equipment grounding cable & the Normally how much current does flow through equipment grounding cable & the wire connecting neutral to ground? (simply mention in mA / A / kA) Justify. [5] iv) In case a 40W incandescent bulb is connected to 230V AC supply, what is the current? How much will be the current when it is connected to 200V supply Repeat the same if a 1 phase 2HP Induction motor is connected instead. Assume suitable data. Hence comment on load model of bulb & Induction motor. [5]	?			3 1.
Q.2a	Two single-phase ideal voltage sources are connected to two ends transmission line of impedance of $0.7 + j2.4$ ohm with voltages given as V = $500 \angle 16.26^{0}$ V and $V_{2} = 585 \angle 0^{0}$ V. Find the complex power for each machine and determine whether they are delivering or receiving real and reactive power. Also, find the real and the reactive power loss in the line.	n		2 2,	
Q.2b	A three-phase transmission line has a per phase series impedance of z $0.03 + j0.4$ ohm per km and a per phase shunt admittance of $y = j4 \times 10^{-3}$ siemens per km. The line is 125 km long. Obtain the ABCD transmission matrix using Pi model. Determine the receiving end quantities , a transmission efficiency when the line is sending 407 MW, 7.833 Myar	on nd)	2 2	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

EMESTER-EXAMINATION MAY 2025 / Re-Exam June 2025

	END SEMESTER EXAMINATION MATTERS / RC-DAM	10	1 1	1,2	1
Q.3a	A power station has the following daily load cycle: Time in Hours 6—8 8—12 12—16 16—20 20—24 24—6 Load in MW 20 40 60 20 50 20 Plot the load curve and load duration curve. Also calculate the energy	10			
Q.3b	enerated per day. Draw neatly showing each component of distribution system i.e. feeder, distributor, transformer & service Mains for 1) Radial feeder & 2) Ring main system. (only diagrams) "The Ring main system is more reliable than radial distribution system". Justify.	10	4	1,2,4,	7
Q.4a	A three phase 60 Hz, 765-kV AC transmission line is 400 km long. The line inductance is 0.88853 mH/km per phase and its capacitance is 0.01268 micro-Farad/km per phase. The line delivers 2000 MVA at 0.8 lagging power factor at 735 kV. Assume lossless line and determine the sending end quantities and voltage regulation using long line model.	10	2	2,3	8
Q.4b	a) Calculate the receiving end voltage when the line given in Q.4a is terminated in an open circuit and is energized with 765 kV at the sending end. b) Determine the reactance and the MVAr of a three phase shunt reactor to be installed at the receiving end to keep the no load receiving end voltage at the rated value.	6	2	2,3	4
Q.4c	Calculate SIL loading for the transmission line mentioned in Q.4a. Find sending end voltage, current in case load is equal to SIL loading. Draw the vector diagram showing voltage and current at receiving & sending end. Hence comment on voltage profile of line under SIL loading	4	2	3,4,5	4
Q.5a	the of vector diagram explain the overvoltage phenomena in	10	3	3,4,5	•
Q.5t	delta transformer as shown below, draw the vector	4	2	2,3	5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai 100002

END SEMESTER EXAMINATION MAY 2025 / Re-Exam June 2025

	the best control of the state o	6	2	2,3	3
Q.5c	A 3-phase, 50 Hz, 132 kV overhead line has conductors placed in a horizontal plane 4 m apart. Conductor diameter is 2 cm. If the line length is 100 km, calculate capacitance to neutral & the charging current per phase assuming complete transposition.				
	(A) (B) (C)				
	4m 4m Working principle,	10	1	2,3	2
Q. 6a	List out all electrical storage systems. Explain working principle, advantages & limitations of pumped hydro storage and battery storage systems.				
•	Prove that if a 2-winding transformer (fig. a) is used as auto-transformer	10	2	2,3	5
- gb	(fig b), its power rating is increased. I_{H} $\downarrow \qquad \qquad$				
	transformer, a = N1/N2 & S _{2widing} is power rating of normal two winding transformer				
Q.7a	a sting of a 3 core cable with various layers	10	2	1,2	3
ò	of protection around it. Explain the purpose of each say		3	1,2	1
Q:7b	the feetore attecting the residually of source	10			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai = 400058

END SEM/RE-EXAM EXAMINATION May /June 25

Program: B. Tech (Electrical)

leag 1

Duration: 3 hrs.

Maximum Points: 100

Semester: IV

Course Code: PC-BTE402

Course Name: Measurement & Instrumentation

Notes:

1. Question number 1 compulsory.

2. Attempt any four questions out of remaining six.

3. Draw neat diagrams.

4. Assume suitable data if necessary.

19/5/25

Q. No.	Questions	Pts.	co	BL	Mod.
1. (a)	A $1000/5 A$, 50 Hz current transformer has secondary burden comprising a non-inductive impedance of 1.6Ω The primary winding has 1 turn. Calculate the net flux in the core and ratio error at full load. Neglect leakage reactance and assume the iron loss in the core to be 1.5 W at full load. The magnetizing mmf is $100A$.	10	2	L3	3
1.(b)	With the help of neat diagram explain in detail how to measure frequency of given signal using digital frequency meter?	10	3	L2	5
,					
	Time in second				
2. (a)	With the help of neat diagram explain in detail working of duel slope integrating type digital volt meter. What are the advantages of a duel slope integrating DVM over Ramp type DVM?	10	1	L1	5
2. (b)	Draw null and extreme positions of LVDT transducer to get zero, minimum and maximum output voltage.	10	1	L1	6
3.(a)	Explain in detail a five point calibration method with flow chart.	05	1	L1	7
3.(b)	Explain the term: 1. Sampling and holding 2. Quantizing and encoding	05	1	L1	5

(c) L	Draw and explain the nature of equivalent circuit and corresponding phasor liagram of a current transformer. Derive expressions for the corresponding	10	1	L1	3
(a) F	atio error. Find the frequency of the horizontal plates if the frequency applied to vertical plate is 50 Hz for the pattern shown in figure (a) and (b).	05	1	L2	4
.(b)	Prove that	15	2	L3	
	$G_f = 1 + 2\nu + \frac{\Delta \rho/\rho}{\varepsilon}$				
. (a)	A Lissajous pattern on the oscilloscope is stationary and has 6 vertical maximum values and five horizontal maximum values. The frequency of horizontal input is 1500 Hz. Determine the frequency of vertical input.	05	1	L1	4
. (b)	Describe the working principle of the harmonic distortion analyzer. How does it measure the harmonic content of a signal, and what are its typical applications in engineering?	10	1	L2	4
5.(c)	Two watt meters are connected to measure the power consumed by a 3-phase load with a power factor of 0.35. Total power consumed by the load, as indicated by the two watt meters, is 70 kW. Find the individual wattmeter	05	3	L3	1
6.(a)	readings. With the help of neat diagram explain in detail how to measure time interval between two events digitally.	10	1	L1	5
6. (b)	Explain the importance of IEC standards in electrical and electronic measurements. Discuss any two specific IEC standards relevant to	10	1	L2	7
7. (a)	to measure the liquid level using the inductive method . Discuss the to measurement accuracy.		2		6
7. (b)	details construction and working	10	1	L1	2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END-SEM/RE-EXAM EXAMINATION May / June 25

Program: B. Tech. (Electrical) Lun 1V

Course Code: PC-BTE402

Course Name: Measurement & Instrumentation

Duration: 3 hrs.

Maximum Points: 100

Semester: IV

Notes:

I. Question number 1 compulsory.

2. Attempt any four questions out of remaining six.

3. Draw neat diagrams.

4. Assume suitable data if necessary.

Q. No.	Questions	Pts.	СО	BL	Mod.
1. (a)	With the help of near diagram explain in detail how to measure frequency of given signal using digital frequency meter?	10	3	L2	5
(b)	A $1000/5 A$, 50 Hz current transformer has secondary burden comprising a non-inductive impedance of 1.6Ω The primary winding has 1 turn. Calculate the net flux in the core and ratio error at full load. Neglect leakage reactance and assume the iron loss in the core to be 1.5 W at full load. The magnetizing mmf is $100A$.	10	2	L3	3
2.(a)	Explain the importance of IEC standards in electrical and electronic measurements. Discuss any two specific IEC standards relevant to measurement systems and their applications.	10	1	L2	7
2.(b)	Draw the block diagram of a Quality Factor (Q-Factor) Meter and explain the role of each block in its operation.	10	2	L1	4
3. (a)	With the help of neat diagram explain in detail working of ramp type digital volt meter.	10	1	L1	5

3.(b)	Draw null and extreme positions of LVDT transducer to get zero, minimum and maximum output voltage.	10	1	L1	6
4. (a)	With the help of neat diagram explain in details construction and working principal of Megger.	10	1	L1	2
4. (b)	With the help of a neat diagram, explain in detail the most suitable method for the measurement of the level of distilled water, considering its poor electrical conductivity	10			6
5. (a)	A Lissajous pattern on the oscilloscope is stationary and has 6 vertical maximum values and five horizontal maximum values. The frequency of horizontal input is 1500 Hz. Determine the frequency of vertical input.	05	1	L1	4
5.(b)	Prove that $G_f = 1 + 2\nu + \frac{\Delta \rho/\rho}{\varepsilon}$	15	2	L3	6
6. (a)	Draw and explain the nature of equivalent circuit and corresponding phasor diagram of a current transformer. Derive expressions for the corresponding ratio error and phase angle error.	15	1	L1	3
6.(b)	Explain in detail a five point calibration method with flow chart.	05	1	L1	7
7. (a)	With the help of a neat diagram and relevant equations, explain in detail how to measure the liquid level using the inductive method. Discuss the working principle, key components, and factors affecting the measurement accuracy.	10	2	L2	6
7.(b)	Find the frequency of the horizontal plates if the frequency applied to vertical plate is 50 Hz for the pattern shown in figure (a) and (b).	05	1	L2	4
	A moving-coil instrument whose resistance is 25Ω gives a full-scale deflection with a voltage of 25 mV. This instrument is to be used with a series multiplier to extend its range to 10 V. Calculate multiplier resistance value?	05	2	L2	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER/RE EXAMINATION MARCH 2025

Program:

S.Y. B. Tech. Etal Dun W

Duration: 3 Hour.

Course Code: PC-BTE403

Maximum Points: 100

Course Name: Electrical Machines-I (R23)

Semester: IV

Notes:

1. Question No. 1 is compulsory.

2. Solve any four questions from remaining six.

3. Draw neat diagrams wherever necessary.

4. Assume suitable data if necessary.

More

Q.No.	Questions	Points	СО	BL	Module No.
Q.1	Answer any four.				
a.	Discuss effects of hysteresis and saturation in magnetic circuit.	05	1	1,2	1
b.	Explain the importance of polarity test in a transformer.	05	2	1,2	6
c.	Explain, in brief, armature reaction in DC machines.	05	3	1,2	4
d.	Draw the operating characteristics of separately excited DC Generator.	05	3	1,2	5
e.	Derive the expression for magnetic force from energy.	05	1	1,2,3	3
Q.2					
a.	The magnetic circuit of figure given below has a cast steel core whose dimensions are given below: Length (ab + cd) = 50 cm Cross-sectional area = 25 cm ² Length ad = 20 cm Cross-sectional area = 12.5 cm ² Length dea = 50 cm Cross-sectional area = 25 cm ²	10	4	1,2,3	1
	Determine the exciting coil mmf required to establish an air-gap flux of 0.75 m Wb. Use the B-H curve given below.				
	2 0.28 cm				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai = 400058
END SEMESTER/RE EXAMINATION MARCH 2025

	2.0 1.8 1.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.8 0.8 0.8 Magnetic fields strength H (kATim) Explain and justify Phasor Group lin detail.				
b.	and the second s	10	3		6
Q. 3 a.	Derive the expression for energy in a singly-excited magnetic field system as shown below. Extent it for linear magnetic system. **Local Local Local Conference of the Confer	10		1,2,3	3
b.	A 600-kVA, single-phase transformer with 0.012 pu resistances and 0.06 pu reactance is connected in parallel with a 300-kVA transformer with 0.014 pu resistance and 0.045 pu reactance to share a load of 800 kVA at 0.8 pf lagging. Find how they share the load; a) when both the secondary voltages are 440 V. b) when the open-circuit secondary voltages are respectively 445 V and 455 V.	10	3		6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058 END SEMESTER/RE EXAMINATION MARCH 2025

4. a.	A d.c. generator has 24 armature conductors. Average e.m.f. induced in one conductor is 2 V and each conductor is designed to handle a current of 5 A. Calculate the rating generator if number of parallel paths in this machine are (a) 2 (b) 4 and (c) 6.	3+3+4	2	1,2,3	5
b.	Define/Explain the following terms a. Angular slot pitch b. Pitch Factor c. Distribution Factor d. Winding Factor e. Vector Groups	10	2		4,5
a.	A 230-V, d.c. shunt motor, takes an armature current of 3.33 A at rated voltage and at a no-load speed of 1000 r.p.m. The resistances of the armature circuit and field circuit are respectively 0.3 ohm and 160 ohm. The line current at full load and rated voltage is 40 A. Calculate, at full load, the speed and the developed torque in case the armature reaction weakens the no-load flux by 4%.	1	2	1,2,3	5
b.	Classify the DC Machines based on excitation.		2		5
a.	Justify the use of commutator in dc machines.	10	2	1,2,3	4,5
b.	Define the MNA and GNA. Discuss the positions of MNA and GNA with and without armature reaction. Justify the reason for keeping brush positions at MNA.	10	2		4,5
a. b.	Discuss operating characteristics of DC Shunt Motor. A 20 kVA, 2500/250 V, 50 Hz, single planets at the second se	10	2	1,2,3	4,5
	A 20 kVA, 2500/250 V, 50 Hz, single-phase transformer gave the following Open-circuit test (on l.v. side): 250 V, 1.4 A, 105 watts. Short-circuit test (on h.v. side): 104 V, 8 A, 320 watts. Compute the parameters of the approximate equivalent circuit referred to high-voltage and low-voltage sides. Also draw the exact equivalent circuit referred to the low-voltage side.		2		6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Magar, Andheri (W) Mumbai - 400058

END SEMESTER/RE EXAMINATION MARCH 2025 June

Program:

S.Y. B.Tech.

Duration: 3 Hour.

Maximum Points: 100

Course Name: Electrical Machines-I (R23)

Course Code: PC-BTE403

Semester: IV

Notes:

1. Question No. 1 is compulsory.

2. Solve any four questions from remaining six. 3. Draw neat diagrams wherever necessary.

4. Assume suitable data if necessary.

246/25

Q.No.	Questions	Points	CO	BL	Module No.
Q.1	Answer any four.				1
a.	Explain eddy current losses in magnetic circuit.	05	1	1,2	1
Ъ.	Explain Core loss resistance and magnetizing reactance in transformer.	05	2	1,2	6
c	Explain, in brief, armature reaction in DC machines.	05	3	1,2	4
d.	Draw the operating characteristics of shunt DC Generator.	95	3		5
e.	Derive the expression for magnetic force from energy.	05	1	1,2	2
				1,2,3	3
Q.2 a.	The magnetic circuit of figure given below has a cast steel core whose dimensions are given below:	10	1	1,2,3	1
	Length (ab + cd) = 50 cm Cross-sectional area = 25 cm^2 Length ad = 20 cm Cross-sectional area = 12.5 cm^2			1,2,5	1
	Length dea = 50 cm Cross-sectional area = 25 cm ²				
	Determine the exciting coil mmf required to establish an air-gap flux			}	
	of 0.75 m Wb. Use the B-H curve given below.				
1					
	a				
] .		
	4-1		,		
	F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ĺĺ		
				ļ	
	l d				
ľ					
				1	

RharatiyaVidyaRhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

END SER/RE EXAMINATION MARCH 2025

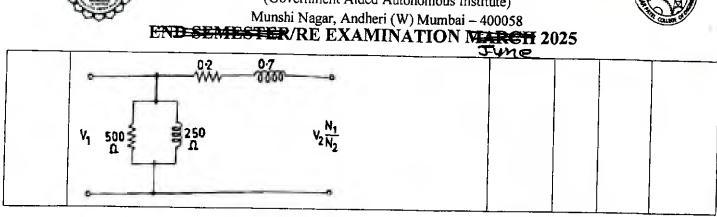
		Tun e	_			
	20 1.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7					
b.	Explain and justify Phasor Group 3in detail.	10	2			•
Q. 3 a.	Derive the expression for energy in a singly-excited magnetic field system as shown below. Extent it for linear magnetic system. Marsless magnetic armsture Marsless magnetic armsture	10	1	1,2,3	3	
	A 33 kVA, 2200 /220 V, 50 Hz single phase transformer has the following parameters Primary winding (h.v. side): resistance $r_1 = 2.4$ ohm leakage reactance $x_1 = 6.00$ ohm Secondary winding (l.v. side): resistance $r_2 = 0.03$ ohm leakage reactance $x_2 = 0.07$ ohm (a) Find the primary resistance and leakage reactance referred to secondary. (b) Find the secondary resistance and leakage reactance referred to primary. (c) Find the equivalent resistance and equivalent leakage reactance referred to primary and secondary. (d) Calculate the total ohmic loss at full load. (e) Calculate the voltage to be applied to the h.v. side, in order to obtain a short circuit current of 160A in the l.v. winding. Under these conditions, find the power input also.	10	3		6	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER/RE EXAMINATION MARCH 2025


4. a.	A 2-pole dia about	JUNE	1 2025		
	A 2-pole d.c. shunt generator charges a 100-V battery of negligible resistance. The armature of the machine is made up of 100 conductors, each of 2 milli-ohm resistance. The charging currents a found to be 10A and 20A for generator speeds of 1055 and 1105 rp respectively. Find the field circuit resistance and flux per pole of the generator. Neglect armature reaction effects.	le 00 10 re	2	1,2,3	5
b.	Define/Explain the following terms a. Angular slot pitch b. Pitch Factor c. Distribution Factor d. Winding Factor e. Vector Groups	10	2		4,5
5. a.	A 230-V, d.c. shunt motor, takes an armature current of 3.33 A at rated voltage and at a no-load speed of 1000 r.p.m. The resistances of the armature circuit and field circuit are respectively 0.3 ohm and 160 ohm. The line current at full load and rated voltage is 40 A. Calculate, at full load, the speed and the developed torque in case the armature reaction weakens the no-load flux by 4%.	10	2	1,2,3	5
b.	Classify the DC Machines based on excitation.	10			
a.	Justify the use of commutator in dc machines.		2		5
b.	Define the MNA and GNA. Discuss the positions of MNA and GNA with and without armature reaction. Justify the reason for keeping brush positions at MNA.	10	2		4,5
. 7	Discuss operating characteristics of DC Series Motor.				4,5
	The equivalent circuit referred to the low-tension side of a 250/2500 V single phase transformer is shown in Fig below. The load impedance connected to the high-tension terminals is 380 + j 230 ohm. For a primary voltage of 250 V, compute (a) the secondary terminal voltage, (b) primary current and power factor, and (c) power output and efficiency.	10	2	1,2,3	4,5 6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

SARDAR PATEL COLLEGE OF ENGINEERING

23/125

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End/Reexam Semester AY2024-2025

Program: B. Tech Electrical Jun W Course Code: PC-BTE 404

Duration: 3 Hr

Maximum Points: 100

Course Name: Microprocessor and Microcontroller

Semester: IV

Note: Q1 is compulsory. Solve any four questions out of remaining six questions

Assume suitable data if required.

The comments should be written while writing programs/codes

Q.	Questions	Poi	CO	BL	Modul
No		nts		1	e no
1	a. The content of A is 20H What will be the content of A after execution of	04	1-3	2	1-7
	1. MOV 50H, #40h MOV R0, 50H				
	MOV A, @R0				
	2. ORL A, # 0FH				
	MOV P0, A SETB P1.3		İ		
	MOV A, P0		ŀ		
	b. Explain how TMOD and TCON registers are used when				
	8051 is used in timer mode	04			
	c. For LCD display state whether RS and R/W pins are input				
	or output pins to LCD display. Also, explain the indication	03	İ		
	of these pins when they are at logic levels 0 and 1				
	d. Show the instruction register content to enable EX0 and				
	Timer 0 interrupts.	03			
	e. Explain any three 'bit addressable' instructions	03			
	f. Explain Port 2 and 3 of 8051	03			
2	Answer the following		1	2,3	1,2
	 What are the contents of Program counter and stack pointer upon RESET of 8051 	02			
	2. What is the function of ALE signal?	02			
	3. Write a program to toggle all bits of port1 using a> Using AAH and 55H b> Using CPL instruction	04			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End/Reexam Semester AY2024-2025

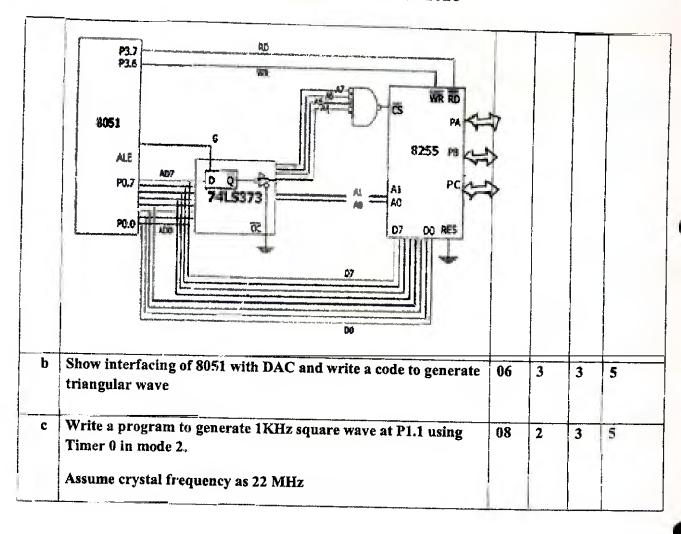
-	4. Explain functions of various internal registers available	04	1		1
	in 8051.				
	5. How are the interrupts dealt by 8051? State different				
	interrupt signals available with 8051 in the order of	04			
	priority from lowest to highest.	ן טיי			
	6. How many register banks are available in RAM of 8051.	04			
	Explain how the particular bank is selected.				
3 a	Write a program	16	2	3	3,4
	1. To add 6 BCD numbers stored in memory from location 6000H				
	2. Unpack digits of packed BCD number '78'				İ
	3. Count number of zeros in a given 8 bit number stored in memory location 6000H				
	4. The result of signed arithmetic operation is stored in				
	RAM location 40H. Verify if the result is positive or				
	negative. If result is positive send high to P1.7 otherwise				
	send a low value.			Ì	
b	Find the delay provided by the following loop with 8051 if the	04	2	3	3,4
	crystal frequency is 11.0592MHz				
	Delay: MOV R5, #9				
	Here1:MOV R4, #242				
	Here2:MOV R3, #255				
	Here3:DJNZ R3, Here3				
	DJNZ R4, Here2				
	DJNZ R3, Here1		1		
	RET				
	[Note Machine cycles for MOV Rn, #value=1, DJNZ=2, RET=2]				
4 a	With a neat block diagram explain 8051 architecture	10	1	2	2
b	Identify addressing mode in each case	05	2	2	3
	1. MOV DPTR, #4000H			İ	
	2. MOV R1, DPL				
	3. MOV A, @R0				
	4. MOVC A, @A+DPTR			1	i

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End/Reexam-Semester AY2024-2025

	5. MOV R0, 40H			1	
c	Explain the concept of stack. Show the stack with addresses and content of SP after execution of the following instructions.	05	2	3	4
	MOV R6, #45H				
	MOV R1, #78H				
	MOV R4, #0F3H				
	PUSH 6				
	PUSH 1 PUSH 4				
5 a	Design memory interfacing for 8051 to have 8KByte of ROM	1 ==			
	using 4Kbyte of ROM chip and 4Kbyte of RAM using 2Kbyte of	15	3		5
	RAM chip. Design should include memory mapping, decoding				
	logic, complete interfacing diagram				
b	If "Y" is to be transferred serially at 9600 baud rate.	05	2	3	6
	What should be the contents of				
	TMOD, TH1, SCON and SBUFF?				
	The crystal frequency is 11.0592 MHz				
6 a	A 4x4 key board matrix is connected to 8051. Port 0 is used as	15	3	3	17
	input port and port 1 is used output port. Let the keys indicate	10]	1
	alphabets 'A' to 'P'. Show the interfacing diagram [Kov				
	allocation is as per your choice]. Write the steps to check if the				
	key is pressed and then to identify which key is pressed.				
	Write the code for the same				
b	Write a code to rotate stepper motor for two revolutions in four	0F	1	2	-
	step sequence. Assume stepper motor moves 1.8 degrees per step	05	3	3	7
7 a					
	For the following interfacing diagram, determine the addressess	6	3	3	5
	of Port A, B, C and control register of 8255.				
	Write a code to transfer status of switches connected to PB0,				
	PB1, PB2, PB3 to LEDs connected to PC0, PC1,PC2, PC3 of				
1	8255		i	1	



SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End/Reenam Semester AY2024-2025

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Barl/Reexam Semester AY2024-2025

Program: B. Tech Electrical Dewn W Course Code: PC-BTE404

Duration: 3 Hr

Maximum Points: 100

Course Name: Microprocessor and Microcontroller

Semester: IV

Note: Q1 is compulsory. Solve any four questions out of remaining six questions

Assume suitable data if required.

The comments should be written while writing programs/codes

,hl	N
1/11	,

Q. No	Questions Questions	Po	- 00	BL	Mod e no
	a. The contents of R0 and A are 20H and 30 H respectively What will be the contents of A and R0 after execution of ADD A, R0 MOV R0,A	03	1-3	2	1-7
	 ADD A,R0 b. How are timers 0 and 1 started and stopped by instructions? c. Common anode LED is connected to port 1. Write a code to display "C" on LED display. 	03			
	d. Explain SCON register setting used for serial communication	03		1	
	e. Explain any three logical instructions f. Explain	03			
	 Instruction RET I/O ports of 8051 	05			
A	nswer the following				
	 What are the functions of the pins TxD and RxD? What is the function of EA signal? Write a program to get byte from port1 and send it to port 2 	02 02		1,	.2
	4. Draw block diagrams of general purpose microprocessor	04			
	5. Explain various bits of Interrupt Enable (IE) register. Write IE register content when external interrupt 1 is enabled.	04	1		

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Part/Reexam Semester AY2024-2025

	6. How many bytes of RAM is available with 8051? Explain its organization?	04			
3 a	Write a program	16	2	3	3,4
	1. To clear 10 RAM locations from the address 60H				
	2. Write a program to take data serially from port 0 and send it in parallel to port 1				
	3. Read 4 bit data from P0.0 to P0.3. Display the same on LED connected to P1.4 to P1.7				
	4. To arrange 5 numbers stored from memory location 6000H in ascending order				
b	For an 8051, with crystal frequency 22 MHz, generate a delay of 5ms.	04	2	3	3,4
	[Note Machine cycles for MOV Rn, #value=, DJNZ=2, RET=2]				
4 a	 Show the status of carry, auxiliary carry and parity flags after the execution of following instructions MOV A,#9EH ADD A,#74H 	03	1	2,3	2,3
	2. Explain how PSW register is used for register bank selection. Write instruction to select bank2	03			
	3. Explain the execution of ACALL instruction	04			
b	With an example explain the following addressing modes	10	2	2	3
	1. Immediate	10			J
	2. Register				
	3. Direct		ļ		
	4. Register Indirect				
	5. Indexed				
а	Design memory interfacing for 8051 to have 4Kbyte of ROM	15	3	3	5
	using 2Kbyte of ROM chip and 16Kbyte of RAM using 8Kbyte				
	of RAM chip. Design should include memory mapping, decoding				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Bad/Reexam Semester AY2024-2025

1	logic, complete interfacing diagram	-				
	If "D" is to be transferred serially at 2400 baud rate. What should be the contents of TMOD, TH1, SCON and SBUFF? The crystal frequency is 11.0592 MHz	06	5	3	3	6
6		1	3		3	7
b	How the addresses of port A, B, C and control word register are identified in 8255? Explain Control Word Register of 8255	05	3	2	1	
7 a	Show interfacing of 8051 with stepper motor. Write a code to run stepper motor in full drive mode	06	3	3	7	
b	Explain the function of the following pins of ADC chip, Also, write whether the pins are input or output to ADC 1. Pins A, B, C 2. Pin EOC 3. Pins IN0 to IN7 4. Pin D0 to D7 5. Pln OE 6. Pin SC	06	3	3	5	
c	Write a program that continuously gets 8 bits from port 0 and sends the same to port 1 while simultaneously generate a square wave of 200 microseconds at P2.1.Use timer 0 to create square wave. Assume crystal frequency 11.0592 MHz.	8	2	3	5	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester 2025 Examinations/Reexam

SET A

Program: CME Levy 14

Course Code: MI BT013

Course Name: Minor in Management

Duration: 03 hours Maximum Points: 100

Semester: IV

Note:

Question 01 is compulsory

• Attempt any four questions out of remaining 06 question

26/ 5/25

Q.No.	Questions	Point s	со	B	Modu le No
Q.1.	 Write in not more than 150 words on the following topics. (10 each) Give Contributions of Kautilya related to management. Explain with diagram the functional foremanship given by Taylor Leadership Theories Principles and techniques of coordination What is departmentation? Describe various bases of departmentation 	20	01,2	01	1,2,3, 4,5,
Q.2.A	Explain in detail Mintzberg's roles and functions of managers through a hierarchical diagram.	10	01	L3	01
Q.2.B	Explain in detail the systems approach to Management. Write any 05 differences between open and closed system.	10	02	L2	03
Q.3.A	Explain the relationship and distinction between management and Administration.	10	01	Li	03
Q.3.B	How will you classify the levels of Management in an organization? Describe the functions performed by different levels of Management.	10			
Q.4. A	Design the Matrix organization structure. Explain the advantages and disadvantages of the structure	10	03	L1	04
Q.4.B.	What are the basic characteristics of formal and informal organization? How does informal organization differ from formal organization?	10	02	L2	04
Q.5. A	What are the essential features of a good plan? Elaborate the steps to effective planning.	10	04	L5	02
Q.5.B.	Explain different types of managerial decisions briefly. Explain the steps for rational decision making.	10	04	L5	02

	Multiple Choice Questions:				
	 Which of the following best describes the difference between power and authority in management? A. Power is formal; authority is informal. B. Power is based on position; authority is based on persona traits. C. Power is the ability to influence others; authority is the formal right to make decisions. D. Authority is always greater than power. 		10	03	L4
	2. What type of power is derived from a person's position in the organizational hierarchy? A. Expert Power B. Referent Power C. Legitimate Power D. Coercive Power				
	3. Which of the following is an example of referent power in a workplace setting? A. A manager punishing an employee for poor performance. B. A team leader admired and respected by their peers. C. An IT specialist with unique technical knowledge. D. A supervisor issuing orders based on company policy.				
	4. What is delegation of authority? A. Transferring all decision-making to a higher authority. B. Assigning tasks without any responsibility. C. Granting a subordinate the power to make decisions within a defined scope. D. Taking over the responsibilities of a subordinate.				
	5. Which type of power is most likely to result in long-term commitment and motivation among employees? A. Coercive Power B. Reward Power C. Legitimate Power D. Expert Power				
	What do you mean by power and authority? Explain in detail the bases power in an organization	10	03	02	05
A. 6	Case Study Background Infosys Ltd., founded in 1981 by Narayana Murthy and a group of	10	03	04	06

and consulting. The company is known for its emphasis on innovation, ethical practices, and a strong employee-centric culture, navigating significant growth and global expansion over the years. Leadership Evolution

- 1. Narayan Murthy Era (1981-2002)
 - Leadership style: Visionary and Emtrepreneurial
 - Achievements: He established Infosys with a focus on quality, Integrity, and client satisfaction. He laid the foundation for a values-driven culture and global expansion.
 - Challenges: Managing rapid growth, scaling operations globally, and maintaining organizational culture amid technological advancements.
- 2. Nandan Nilekani and Leadership Transitions (2002-2014)
 - Leadership Style: Strategic and Transformational
 - Initiatives: He transformed Infosys into a global IT services giant, emphasizing scalability, digital transformation and client -centricity.
 - Challenges: Adopting to evolving technology landscapes, talent management, and leadership succession.
- 3. Vishal Sikka Era (2014-2017)
 - Leadership Style: Innovative and Technologically driven
 - Innovations: Sikka focused on Ai. Automation, and digital platforms to enhance Infosys' competitive edge.
 - Challenges: Overcoming internal resistance to change, cultural integration, and meeting high growth expectations amidst industry disruption.
- 4. Current Leadership (2018-present)
 - Leadership focus: Continuity and growth under Salil Parekh
 - Priorities: Parekh emphasizes digital transformation, client relationships, talent development, and sustainability.
 - Current Challenges:
 - Cultural Integration: Infosys faces challenges in integrating diverse global cultures, impacting organizational cohesion.
 - Operational efficiency: Balancing technological innovation with operational efficiency remains crucial for meeting client demands.
 - Market Competition: Intense competition in the IT sector requires continuous innovation and differentiation.

	 Regulatory Compliance: Adaptating to changing global regulatory requirements poses challenges in compliance and risk management. Leadership Transition: Smooth leadership transitions and maintaining strategic focus during changes are vital for sustained growth. Impact of Leadership and organizational Culture: Innovation: Infosys continues to drive innovation in digital solutions, AI and cloud service. Employee Development: The company invests in talent development through leadership programs and a culture of continuous learning. Ethical Standards: Infosys upholds high ethical standards and corporate governance practices. Questions: How did Narayan Murthy's visionary and entrepreneurial leadership style shape the foundational values amd global expansion of Infosys? 05 How has Infosys maintained its commitment to ethical standards and corporate governance while navigating 				
	leadership transitions and global market dynamics? 05				
Q.7. B	Write short notes on any two:	10	01	02	07
	 Strategic and Operational Control. (Difference) Challenges faced by managers in twenty first century related to internal and external environment Management by Objectives (MBO) Difference between Business Ethics and Social Responsibility 				

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

NG

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester 2025 Examinations Re examination.

SET B

Program: CME

Course Code: MI BT01

Course Name: Minor in Management

Duration: 03 hours Maximum Points: 100

Semester: IV

Note:

Question 01 is compulsory

Attempt any four questions out of remaining 06 questions

3016/15

Q.No.	Questions	Point s	со	B	Modu le No
Q.1.	Write in not more than 150 words on the following topics. (10 each) 1. Management as an art, Science and profession. 2. Explain the systems approach to management. Bring out the difference between open and closed system. 3. Explain the concept of "Bounded Rationality". What are the factors leading to Bounded rationality 4. What do you mean by Span of management? As a manager, do you prefer wide or narrow Span? Give reasons	20	01,2	01	1,2,3, 4,5,
Q.2.A.	Explain the 14 principles of Management given by Henry Fayol	20	01	L3	01
Q.3.A.	Discuss the contributions of Hawthorne Experiments' in the development of managerial thinking. How did Behavioural scientists modify the basic findings of Hawthorne's Experiments	104	02	L2	Q 3
Q.3.B.	How does long term planning differ from short term planning? How can both be coordinated?	10	01	LI	03
Q.4. A	Explain the Circular organization Structure and Team based organization structure with figures. Describe its Advantages and Disadvantages.	10	03	Ll	04
Q.4.B.	What are the basic characteristics of formal and informal organization? How does informal organization differ from formal organization?	10	02	12	04

Q.5. A	1. Which of the following hest defines planning in management?	10	04	L5	02
12	A) Recruiting and training employees	'''			V-
	B) Setting objectives and deciding in advance the appropriate actions				
	to achieve them	[+
	C) Monitoring organizational performance				
	D) Coordinating between different departments			1	
	2. What is the primary purpose of decision-making in		1		
	management?				
	A) To avoid responsibility		1		
	B) To assign blame during failures	!		1	
	C) To choose the best course of action among alternatives				
	D) To delay organizational changes				
	3. Which of the following is NOT a characteristic of planning?				
	A) Goal-oriented				
	B) Future-focused				
	C) Reduces uncertainty				
	D) Avoids resource allocation	ĺ			
	4. Strategic planning is typically concerned with:				
	A) Daily routines and operations			-	
	B) Hiring new staff	<u> </u>			
	C) Long-term goals and the overall direction of the organization			1	
	D) Supervising lower-level employees	}			
	5. In the decision-making process, the step that comes immediately				
	after identifying the problem is:				
	A) Implementing the decision				
	B) Evaluating the decision				
	C) Developing alternatives	1		j	
	D) Selecting the best alternative				
Q.5.B.	What are the essential characteristics of an effective decision making?	10	04	L5	02
Q.J.D.	How can a manager make effective decisions?	<u> </u>			<u> </u>
Q.6. A	Explain the difference between positional power and personal power?	10	03	L4	05
Q.0.11	Illustrate with examples the types of both powers.		1		
		10	02	02	05
Q.6.B.	Describe the features of delegation of authority. What steps are	10	03	02	03
	followed in delegation of authority?	10	02	0.4	06
Q.7.A.	Case Study	10	03	04	100
	Querview				
	The Tata group, established in 1868 by Jamshetji. Tata is one of India's	Ì			
	largest and most influential conglomerates. With operations spanning				ļ
	more than hundred countries and industries as diverse as steel,				
	automotive information, technology, hospitality, and consumer goods,				
	Tata group exemplifies the integration of power and authority in a				
	major corporate entity.				
	Leadership Legacy	J			

The power and authority of Tata group are significantly influenced by its leadership legacy. Founder such as Jamsetji Tata set a high standard with their vision of industrialization and social responsibility. This vision was carried forward by subsequent leaders like JRD Tata and Ratan Tata Their leadership emphasized not just strategic foresight, but also a commitment to ethical business practices and innovation, establishing a strong foundation for the groups, ongoing influence and authority in various markets.

Corporate structure, and Governance

Tata group operates through a network of hundred companies, each functioning with a degree of operational independence, but aligned with the groups strategic goals. This structure allows individual entities to respond flexibility to market conditions, while maintaining coherence with the overarching strategic direction of the group governance is overseen by the Tata trust which enforce high standards of transparency and accountability, reinforcing the groups authority by ensuring that it's operations adhere to its core values and ethical standards.

Ethical standards and Corporate Social Responsibility(CSR)

The group's commitment to ethical practices and CSR is integral to its power dynamics Tata group prioritizes, social responsibility, integrating it into its business model rather than treating it as an ancillary activity. For instance, Tata steals initiatives in community development and Tata Consultancy Services TCS employee welfare programs demonstrate how the group CSR activities enhance its reputation and influence fostering trust and goodwill among stakeholders

Strategic Diversification

Strategic diversification is a cornerstone of Tata Groups authority. By investing across various sectors, from automotive to IT and consumer goods, Tata group effectively manages financial risk and capitalizes on growth opportunities. This approach not only mitigates the impact of market volatility, but also strengthens the groups competitive position. Notable examples include Tata motors acquisition of Jaguar Land Rover and the expansion of TCS into new markets, showcasing, how diversification support supports the groups of global strategy and market influence.

Global presence

	Tata group substantial international presence amplifiers its global authority operating in over hundred countries the group leverages, global market, opportunities and maintenance a competitive edge through its widespread footprint. The ability to adapt a different regulatory environments and cultural context, further enhances status influence and strategic positioning in the global market Conclusion, the Tata groups authority is shaped by combination of visionary leadership, a robust and flexible, corporate structure, a strong commitment to ethical practices and CSR, strategic diversification and a significant global presence. These elements collectively contribute to the groups, powerful position, both domestically and internationally. <i>Questions</i>				
	 How have Tata group's historical leaders influenced its strategic direction and operational authority? 02 What benefits does Tata groups decentralized corporate structure offer in terms of governance and flexibility? 03 What role does Tata groups global presence play in? Enhancing its strategic authority and market influence internationally? 05 				
Q.7. B	Write short notes on any two: 1. Difference between Business Ethics and Social Responsibility 2. Strategic and Operational Control. (Difference) 3. Challenges faced by managers in twenty first century related to internal and external environment 4. Describe various principles of coordination.	10	01	02	07

c 9

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

281925

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

End Sem/Re Exam May June 2025

Program: Electrical Engineering Jem V
Course code: PC-BTE405

Duration: 3 Hour Maximum Marks: 100

Semester: IV

Name of the Course: Signals and Systems

Solve any five questions out of seven.

· Answers to all sub questions should be grouped together.

• Make suitable assumptions whenever necessary. State them clearly.

• Diagrams drawn to support your answer should be clearly visible.

Q. No.		Pts	CO	BL	Module
(i)	Determine whether the following signal is periodic. If a signal is periodic, determine its fundamental period. $x(t) = 2\cos(3t) + 3\sin(7t)$	5	1	3	1
(ii)	Given $y_1[n] = [1, 4, -3, 0, 7]$, $x_1[n] = [2, 1, 1.5, 3]$ $\uparrow \qquad \uparrow$ Plot $y_1[n] + 2x_1[n-1]$	5	1	3	1
(iii)	Determine whether u[n] is an energy signals, power signals, or neither.				
(iv)	Determine whether the following system is static / dynamic, stable/unstable, causal / non causal, linear / nonlinear, TV/TIV. Justify.	5	1	3	1
	$\frac{dy(t)}{dx(t)} + 5y(t) = x(t)$				
2 (i)	The impulse response h[n] of a discrete-time LTI system is shown below. Determine the output y[n] of this system to the input x[n] as given	6	1	3	2, 6
	(a) using ZT (b) without using ZT. $ \begin{array}{ccc} & & & & & & & & & & & & & & & & & & & $				
	2				
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	-2-1 + 1 2 3 4 5 6 7 n				
				ļ	

				1	
(ii)	Find the cross correlation of x (n) = $\{1, 2, 3\}$ and h (n) = $\{2, 0, 1\}$ (i) using Z.T. (ii) Without using Z.T.	6	3	3	1
(iii)	For the following difference equations and associated input and initial conditions, determine the zero state response.	8	1	3	2,
	$y[n] - \frac{1}{2}y[n-1] = x[n]$, with $x[n] = (\frac{1}{3})^n$, $y[-1]$	-1]	**]		1
3A	Determine Fourier series for the $f(x) = x$ for $-\pi \le x < \pi$	10	3	3	3
В	Plot sgn(t). Determine the FT of sgn(t). Plot the magnitude response.	10	3	3	3
4 (i)	Derive LT of u (t). Using Laplace transform properties, obtain the Laplace transform of $x(t) = t e^{-at} u(t)$. State the properties used.	4	2	3	4
(ii)	Find initial and final values of the signal with transform given as $X(s) = \frac{s+10}{s^2+3s+2}$	6	2	3	4
(iii)	Consider a CTLTI system for which the input x (t) and output y (t) are related by $y''(t) + y'(t) - 2y$ (t) = x(t) (a) Find the system function H(s). (b) Determine the impulse response h(t) for the system to be (i) causal (ii) stable (iii) neither causal nor stable.	10	2	3	4
5 (i)	Determine the impulse response of DTLTI system defined by $H(z) = (3 - 4z^{-1}) / (1 - 3.5 z^{-1} + 1.5 z^{-2})$. Specify the ROC of $H(z)$ and determine $h(n)$ for the following condition (a) The system is stable (b) The system is causal (c) The system is anticausal.	15	2	3	
(ii)	The output $y[n]$ of a discrete-time LTI system is found to be $2(1/3)^n$ $u[n]$ when the input $x[n]$ is $u[n]$. Find the impulse response $h[n]$ of the system.	5	2	3	6
5(i)	Explain the mapping between the s-plane and the z-plane.	8	2	1	6
(ii)	Find the impulse response h[n] for the causal DTLTl system satisfying the following difference equation. (i) using ZT (ii) without using ZT. Also determine whether system is a FIR or an IIR system. $y[n] = x[n] - 2x[n-2] + x[n-3]$	6	2	2	2,0
iii)	Plot poles and zeros of F(s). Obtain f (t). $F(s) = \frac{(s+1)(s+3)}{(s+2)(s+4)}$	6	4	3	4
7	Realize using DF I, DF II, cascade and parallel realization. $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{2}x(n-1)$	20	2	3	7

Bharatiya Vidya Bhayan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

End: Sen/Re Exam May. June 2025

Electrical Engineering Jew YV Program:

Course code: PC-BTE405

Name of the Course: Signals and Systems

Duration: 3 Hour

Maximum Marks: 100

Semester: JV

Solve any five questions out of seven.

Answers to all sub questions should be grouped together.

• Make suitable assumptions whenever necessary. State them clearly.

•	Diagrams drawn to support your answer should be clearly visible.	M	161	V	
Q		Pts	CO	BL	Module
1 (i)	Determine whether the following signal is periodic. If a signal is periodic, determine its fundamental period. π π	5	1	3	1
	$x(t) = \cos\left(\frac{\pi}{3}t\right) + \sin\left(\frac{\pi}{4}t\right)$				
(ii)	Given $x_1[n] = [1, 0, -3, 0, 7]$, $x_2[n] = [1, 1, 1.5, 4]$ \uparrow Plot product of $x_1[n-1]$ and $x_2[n+1]$	5	1	3	1
(iii)	Determine whether x(t) is an energy signals, power signals, or neither.	5	1	3	1
	$x(t) = e^{-at} u(t), a > 0$				
(iv)	Determine whether the following system is static / dynamic, stable/unstable, causal / non causal, linear / nonlinear, TV/TIV. Justify. $T[x(n)] = ax(n) + b$	5	1	3	1
2 (i)	For a DTLTI system, the impulse response h[n] and input x[n] is as given. Determine the output y[n] (a) using ZT (b) without using ZT. *[n]	6	2	3	2, 6
,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
(ii)	Determine autocorrelation of the sequence x(n)={1, 2, 1, I} (i) using Z.T. (ii) Without using Z.T.	6	2	3	2,6
(iii)	For the following difference equations and associated input and initial conditions, determine the zero input response. $y[n] - \frac{1}{2}y[n-1] = x[n]$, with $x[n] = (\frac{1}{3})^n$, $y[-1] = 1$	8	1	3	2,6

3 A	Determine Fourier series for the $f(x) = x^2$ for $-\pi \le x < \pi$	10	3	3	3
B		10	_3	3	3
_ _	Determine the FT of $\cos(\omega_0 t)$. Plot the magnitude spectrum.				
	Derive LT of u(t). Using LT properties, derive the Laplace transforms of	4	2	3	4
4	Derive L1 of u(t). Using L1 properties, derive the Euphage transforms of				
(i)	$x(t) = e^{-at} \cos(\omega o t) u(t)$. State the properties used.	6	2	3	4
(ii)	Find initial and final values of the the signal with transform given as	·	~		•
	$X(s) = \frac{2s+6}{s(4s+2)}$				
	$X(s) = \frac{1}{s(4s+2)}$				
(:::)	A CTLTI system has system function as given. Determine h(t) if system is	10	2	3	4
(iii)	known to be (i) Causal (ii) stable (iii) neither causal nor stable.				
	$H(s) = \frac{s-1}{s}$				
	$H(s) = \frac{s-1}{(s-2)(s+1)}$				
5	1 . 01	15	2	3	O "
	$X(z) = \frac{1 + 2z^{-1}}{1 + 4z^{-1} + 3z^{-2}}; \text{ ROC} \to z > 3$				
	$1+4z^{-1}+3z^{-2}$				
	Obtain IZT of X(z) using				
	(i) Inverse integral method (Cauchy's residue theorem)			1	
	(ii) Partial fraction method				
	(iii) Long division method				
	Comment on the stability of the system.	5	2	3	6
	A causal discrete-time LTI system is described by				
	3 1	1			
	$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n]$				
	4 8 where $x[n]$ and $y[n]$ are				
	the input and output of the system, respectively.				
	(a) Determine the system function H(z).				
	(b) Find the impulse response h[n] of the system.	-	+		0
		10	2	1	6
6A	For the difference equation given below:	10		1	
	y(n) = 2x(n) + x(n-1) + x(n-2) + x(n-3)				
	Determine H(z), h(n). Is it FIR/IIR? Realize.	10	2	1	6
В	Explain the mapping between the s-plane and the z-plane.	10		1 2	2,6
7A	Peolize filter with impulse response h(n) given as				2,0
,	h(n) = 4δ (n) + 5δ (n-1) + 6δ (n-2) + 7δ (n-3). Calculate output y(n) if input				
_	x(n) is $x(n) = [1,2,3]$.	10	4	3	4
В	Realize H(z) using parallel realization.	10	7	"	
	$H(z) = \frac{3z(5z-2)}{z}$				
	$H(z) = \frac{3z(5z-2)}{(z+\frac{1}{2})(3z-1)}$			1	
	(2,72,72)				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/RE-EXAM EXAMINATION MAY/JUNE 2025
W/E S. Y. S. S. C. C. Level Deur Buration: 3 hr

Course Code: MI-BT041

Γ041 Maximum Points: 100

Course Name: Introduction to Robotics Semester: 1V

Instructions:

Program: M/E

• Question 1 is compulsory.

• Illustrate your answers with neat sketches wherever necessary.

Assume appropriate data if required and state your reason.

· Preferably, write the answers in sequential order.

26/5/25

Q. 10.	Questions	Points	СО	BL	Module No.
Q.1	a. Using the three laws of robotics, create a scenario where a robo is involved in a real-world task, explaining how each law applies	l .	1	3	1
	b. A robotic arm is required to assemble small electronic components in a confined workspace. Suggest a suitable robotic system based on work volume and configuration. Justify your answer.	3	2	3	2
	c. Develop a sensor layout plan for an autonomous delivery robot Include sensors for localization, obstacle detection, mapping Justify your choices.	1	2,3	5,6	3
	d. Describe methods of robot programming and explain how they are applied in industrial environments.	5	4	2,3	6
Q.2	a. What is Gazebo? Why is it widely used in robotic simulation?	5	1	1	6
	b Differentiate between industrial, non-industrial, and special purpose robots with examples.	- 5	2	2	1
•	 Describe the motion subsystem and its components, including manipulators, joints, and end-effectors. 	5	3	1	1
	d. Explain how the concept of Degrees of Freedom (DOF) influence the design and capabilities of robotic arms used in industria automation.		4	3	1
Q.3	a. List and explain at least five industrial applications of robots Highlight how automation improves productivity in these sectors		1	2	2
	 Explain the purpose of WAIT, SIGNAL, and DELAY command in robotic programming. 		2	3	6
	c. What is the function of the Remote Center Compliance (RCC device in robotic assembly? Explain with an industrial scenari where misalignment is a frequent issue.		3	4	2
	d. Classify any three types of robots based on their drive mechanism and explain their typical industrial applications.	s 5	4	3	2
Q.4	 Define and explain the key characteristics of sensing devices sensitivity, resolution, accuracy, and repeatability. 	: 5	1	1	3

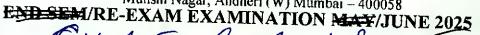
Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058 END SEM/RE-EXAM EXAMINATION MAY/JUNE 2025

	 b. i. If the maximum count possible for an incremental rotary encoder is 6000 pulses and the encoder has a full-scale range of ±270°, calculate the angular position corresponding to a count of n = 1250 pulses. ii. A linear potentiometer with a total length of 172 mm and a total resistance of 7 kΩ is used to measure the displacement of a robotic arm. The potentiometer is connected to a 12V reference voltage (v_R). If the wiper moves by 85 mm, determine: 1. The output voltage (v_O). 2. The resistance between the wiper and ground. 	2+3	2		3
	c. How do control statements (IF, ELSE, WHILE, FOR loops) enhance robotic program execution? Explain with examples.	5	3		6
	d. Discuss the environmental factors that influence robot design and operation in industries such as space exploration, underwater environments, and hazardous areas.	5	4	5	3
Q.5	a. Define a robotic gripper and explain its significance in automation and manufacturing.	5	1	1	4
<u> </u>	b. Explain the working and applications of mechanical grippers. How do they differ from other types?	5	2	3	4
	c. Compare the advantages and limitations of two-finger, three-finger, and multi-finger grippers.	5	3	4	4
	d. Discuss the use of robotic grippers in food handling and packaging industries. What are the major design challenges?	5	4	3	4
Q.6	a. Define a control system in robotics. Why is it important?	5	1	1	5
Q .0	b. Explain the difference between open-loop and closed-loop control systems in robotics.	5	2	. 3	3
	c. Compare on-off control, proportional control, and PID control with application seenario.	5	3	4	5
	d. Suggest an appropriate transmission and drive system for a warehouse robot and justify your selection.	5	4	3	5
Q.7	a. Describe the evolution of programming languages used in robotics. How have they improved over time?	5	1	2	7
	b. Explain the structure of robot programming with labeled diagram.	5	2	3	7
	c Compare first-generation, second-generation robotic languages with modern languages like ROS in terms of capabilities and ease	5	3	4	7
	d. How have open-source frameworks changed the development of robotic programming languages?	5	4	2	7


Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

Program: M/E S. Y. A. Tous Elect Serguration: 3 h
Course Code: MI-BT041

Course Name: Introduction to Robotics

Maximum Points: 100

Semester: IV

Instructions:

Question 1 is compulsory.

Illustrate your answers with neat sketches wherever necessary.

· Assume appropriate data if required and state your reason.

Preferably, write the answers in sequential order.

30/4/25

Q. No.	Questions	Points	СО	BL	Module No.
	a. a. Explain Isaac Asimov's Three Laws of Robotics and their relevance in modern robotics. What is the fourth law of robotics introduced by Fuller in 1999? How does it impact employment?		1	3	1
	b. Differentiate between electric, hydraulic, and pneumatic drive systems. Suggest which is most suitable for heavy-duty welding and justify your choice.	5	2	3	2
	c. Identify and justify sensors needed for navigation, obstacle detection, and inventory recognition in an automated warehouse. Include placement and significance.	5	2,3	5,6	3
	d. Compare online and offline robot programming methods. For each, provide one industrial example and discuss its advantages and limitations.	5	4	2,3	6
Q.2	a. Define robot programming and explain its significance in robotic automation.	5	1	1	6
•	b. Differentiate between planar DOF, spatial DOF, and redundant DOF. Provide examples.	5	2	3	1
1	c. Describe the motion subsystem and its components, including manipulators, joints, and end-effectors.	5	3	I	1
02	d. Explain how the concept of Degrees of Freedom (DOF) influences the design and capabilities of robotic arms used in industrial automation.	5	4	3	1
Q.3	how automation improves productivity in these sectors	5	1	2	2
-	robotic programming.	5	2	3	6
	c. What is a Remote Center Compliance (RCC) device? Discuss its role in assembly applications.	5	3	4	2
	d. Classify any three types of robots based on their drive mechanisms and explain their typical industrial applications.	5	4	3	2

Blombleya Vidya Bhavan'-

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058 END SEM/RE-EXAM EXAMINATION MEN/JUNE 2025

Q.4	a.	Define and explain the key characteristics of sensing devices: sensitivity, resolution, accuracy, and repeatability.	5	1	1	3
	b.	i. If the maximum count possible for an incremental rotary encoder is 4000 pulses and the encoder has a full-scale range of $\pm 360^{\circ}$, calculate the angular position corresponding to a count of $n=1430$ pulses. ii. A linear potentiometer with a total length of 160 mm and a total resistance of $7 \text{ k}\Omega$ is used to measure the displacement of a robotic arm. The potentiometer is connected to a 12V reference voltage. If the wiper moves by 90 mm, determine: 1. The output voltage at the wiper.	2+3	2		3
	C.	2. The resistance between the wiper and ground. How do control statements (IF, ELSE, WHILE, FOR loops) enhance robotic program execution? Explain with examples.	5	3		6
	d.	Discuss the environmental factors that influence robot design and operation in industries such as space exploration, underwater environments, and hazardous areas.	5	4	5	3
Q.5	a.	Define a robotic gripper and explain its significance in automation and manufacturing.	5	1	1	4
4.4	b.	i. A gripper is holding an object of weight 100 kg using a friction coefficient of 0.25. If the number of contact surfaces is 2, determine the required gripping force. ii. If a 200 kg object is to be lifted with an acceleration of 5 m/s², and the friction coefficient is 0.3 with 2 contact surfaces, calculate the gripping force required.	2+3	2	3	4
	c.	Compare the advantages and limitations of two-finger, three-finger, and multi-finger grippers.	5	3	4	4
	_d.	Discuss the use of robotic grippers in food handling and packaging industries. What are the major design challenges?	5	4	3	4
Q.6	a.		5	1	1	5
	b.	Explain the difference between open-loop and closed-loop control systems in robotics.	5	2	3	5
	c.	Compare on-off control, proportional control, and PID control with application scenario.	5	3	4	5
	d.	Suggest an appropriate transmission and drive system for a warehouse robot and justify your selection.	5	4	3	5
Q.7	a.	The state of the s	5	1	2	7
-	L	C 1	5	2	3	7
	b.	Compare first-generation, second-generation robotic languages with modern languages like ROS in terms of capabilities and ease of use.	5	3	4	7
	d.	How have open-source frameworks changed the development of robotic programming languages?	5	4	2	7